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1. SUMMARY

As an alternative to using traditional first principle-based
modeling of a protected subject’s physiological responses
to real-life acceleration trains (both positive and negative-
to-positive Gz transitions), a nontraditional systematic
approach is being designed to facilitate the evaluation and
prediction of human cardiovascular responses to G-suit
and Positive Pressure Breathing (PPB) pressure schedules.
The purpose of this work is to develop novel improved
Anti-G protection schedules optimized for individual pilots
in general and push-pull protection in particular. The
proposed nontraditional systematic models are based on
input-output  relationships supplemented by expert
knowledge. Therefore, both the experimental design and
physiological data processing architecture are critical in
this project. Six subjects (two females and four males)
participated in the initial experimental effort. Persistently
excited non-linear G-suit and PPB pressure schedules,
which are not direct linear functions of Gz levels, have
been applied using two types of electronic valves: (i) a
combined Breathing Regulator and Anti-G valve (BRAG
valve)'; and (ii) two custom-designed electronic
(SAMCAYV)? valves, The recorded parameters were heart-
level blood pressure, ECG, respiratory rate, G-suit and
PPB pressures. Among other issues, this paper describes a
Physiological Data Analysis Toolbox (®-DAT) that
integrates statistical, fuzzy and linear trend investigations
with higher-order spectrum analysis of the experimental
data. ©-DAT has been designed as a preprocessor of the
nontraditional systematic modeling architecture and
proven very efficient in establishing correlation and trend
dependencies between the non-linear pressure schedules
employed and responses obtained.

2. INTRODUCTION

Currently, the pressurization of anti-G-suits and positive
pressure breathing (PPB) is controlled by mechanical
valves that generate pressure schedules lineacly dependent
on momentary acceleration measurements. However, the
physiological responses to acceleration trains and pressure
schedules are non-linear due to time delays and complex
reflex functions of the cardiovascular dynamics. Using
modern microprocessor-controlled electronic valves and

! “*Combined regulator and Andi-G valve’’ designed by Normalair-

Garrett Lid. (NGL).

? “*Computer-controlled valve'’ designed by ESI in co-operation

with DCIEM.

fast computer technologies, this project is aimed at the
development of an Expert System for offline and online
adaptive generation and control of Anti-G counter-
measures optimized for individual pilots and groups of
pilots. To develop such an Expert System, there is a need
to model and prediet the physiological responses of
individual subjects to candidate non-linear schedules of G-
suit pressure and PPB. The nontraditional systematic
modeling and prediction architecture is being developed
mainly based on input-output experimental relationships
and, therefore, both the experimental design and
physiological data processing architectures are critical. It is
typically not obvious how to design acceleration
experiments so that maximum amount of information on
the cardiovascular dynamics is obtained using a lirnited
number of expensive manned experiments. This paper
addresses the design of such experiments, as well as a
systematic approach to analyzing the experimental data.

3. METHODS B

3.1 Subjects

Six subjects (two fernales and four males) with the mean
age of 35 * 3.7 years, height of 171.9 + 11.5 c¢m, and
weight of 73.1 £ 16.0 Kg participated in the study. All
subjects were members of DCIEM Acceleration Team and
passed DCIEM medical examinations that included a full
cardiovascular test required by the Human Subjects Ethics
Committee for participation in G-suit and PPB studies.
Three different sizes of STING? suit (small, medium, and
large) were used to ensure proper individual fit.

3.2 Experimental Setup and Protocol

Figure 1 shows the experimentzal setup for both BRAG and
SAMCAYV valves. For the BRAG valve, the PPB outlet
pressure was a function of G-suit pressure. To achieve
independent control of G-suit and PPB, two SAMCAV
valves were used to control the G-suit and PPB pressure
individually. In general, the experiment was designed for
three different system configurations: (i) G-suit without
PPB (SAMCAYV valve) with pressures varying from 2 to 8
psi and onset rates of 0.4 to 3 psi/sec; (ii) G-suit with PPB
(SAMCAYV valves) with pressures varying from 2 to 8 psi
for G-suit and 0 to 60 mmHg for PPB; and (iii} G-suit with
PPB (BRAG valve) with pressures varying from 2 to 8.8
psi and the comresponding PPB varying from 0 to 51
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“conditional” and "unconditional" outputs were compared
to check their effect on the inputs. Observations of mean
values can provide information on the significance and
type of a model dependency on its input variables. The t-
statistic has also been used for testing the null hypothesis
[10, t1]. .

Auto-correlation and cross-correlation

The primary purpose of linear correlation analysis is to
measure the strength of a linear relationship between two
variables. This tool can also be used in designing
experiments. The quantitative information contained in the
correlatdon plots can be used at the modeling stage.
Initially, it is not generally clear what type of model may
be appropriate for a batch of data. The shape of the auto-
correlation plot can be used for preliminary analysis of this
issue. In general, the shape of the auto-correlation function
reveals the properties and order of the process [5].
Moreover, it can be used to evaluate whether the input
variables (G-suit and PPB pressures) have been varied
independently.

Higher order spectral analvsis

Auto-correlation and power spectrum analysis cannot
reveal all the information contained in a stochastic non-~
Gaussian or deterministic signal. Higher-order spectra
analysis looks into the higher-order momenta or cumulants
of a signal. The Higher-Order Spectral Analysis (HOSA)
Toolbox [12] is implemented in @-DAT for this purpose.

In addition to generating the pertinent analyses described
above, P-DAT generates an output (report) file that
contains the relevant parameters and calculated indices for
the data being analyzed. The output file is used for proper
clustering the experimental results in a database and
further non-traditional modeling (system identification),
prediction, and generation of optimal Anti-G protections
by the Expert System mentioned in Section 2.

6. DESIGN OF EXPERIMENTS
6.1 Design of Inputs

The performance of the input pressure profiles designed
for this study was evaluated using the correlation analysis.
The results (Figures 5-8) indicate a high degree of
correlation between inputs (G-suit and PPB pressures) and
outputs (systolic and diastolic blood pressures). Figures 5
and 6 show the correlation analysis results for G-suit, and
G-suit with PPB in the experiments with subject No.1
(dubbed "S1"), respectively. The correlation analysis
results for the BRAG valve are shown in Figure 7. It
should be mentioned for the case of the BRAG valve that
G-suit and PPB pressures are linearly dependent. This
dependency between G-suit and PPB pressures is not
desirable in the comprehensive model identification
process.

Figure 8 shows the correlation results for a group of five
subjects. It can be noticed again that the inputs and outputs
are highly correlated. Moreover, it has been found in our
work [13] that the random pressure profile resulted in a
very comprehensive model for the case of G-suit and PPB
applied together. To develop a comprehensive model for
the case of G-suit and PPB applied independently, there is
a need of more experiments with different levels of PPB
combined with randomly changing G-suit pressure (that is,

uncorrelated G-suit and PPB  pressures) (13]. In
conclusion, from the point of view of the experimental
design, the correlation analysis can be used for evaluating
the input signals designed, such as G-suit and PPB
pressure profiles.
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Figure 7. Correlation coefficients for S1: Gsuit
and PPB with BRAG valve
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Table 3. Conditional and unconditional standard
deviations of heartheat rate

Pres. Profile Conditional, Heattbeat Rate (bpm)
Unconditional | LI/ L2 L3 4 L5 L6 L7 L8

Profile | ¢ | g1l 02| 03| o4} os| o] o7 08

Slgswe0 | 35 | 24 | 27

Sigsuiill 72 72 | 43
S0z T 70 39 |42 [ 37 | 71 [ 51| 61| 63| 57
Stgsun3 | 82 | 6.1 | 651 64 | 5.6 8.2

Sigsucts | 8.1 | 42 | 6.6
Stgsuit0é | (1. | 5.7 | 8.7
STgsuci3 § 7.0 | 26 | 2.0 | 3.0 1.6
STgepo03 | 14. | 7.8 | 15. | 12 | 7.1 | 16.
Stgppe0s | 16. | 12. | 15. | 16. | 16. | 12
SigppdV7 | 13. | 4.1 12

Steppbl4 | 77 | 79 | 76

It is shown in Tables 1-3 that the criteria of having the
smaller standard deviation for the conditional population
than for the unconditional one is satisfied in most of the
cases considered. This comparison also reveals the quality
of the experiment conducted. Moreover, observation of the
mean values can reveal important information on the effect
and relationship of input to the output.

A t-statistics test [10, 11] with 95% confidence level has
been performed on the conditional population to find out
whether the input is capable of explaining the output
variation. Table 4 shows the result of the t-test for subject
"S1" with a multi-step G-suit pressure input. The quantifier
‘1’ in Table 4 indicates that the variation in output is due
to the input, which corresponds to the rejection of nuil
hypothesis [10], and O states that the input cannot explain
the output variation, which means the acceptance of null
hypothesis. This is preliminary step can be used for
eliminating the unacceptable data. It also shows the
performance (effectiveness) of the designed inputs.

Figures 12-14 show the conditional means trends for
systolic and diastolic blood pressures, and heartbeat rate
for subject “S1." It can be seen from the figures that there
exists a linear trend for systolic and diastolic blood
pressure. This is not valid for the case of heartbeat rate. In
general, the trend analysis technique reveals information
about the input/output relationship. This relationship can
be linear or non-linear. However, a non-linear relationship
can be approximated by a higher-order polynomial. It
should be mentioned that we are interested in the dynamic
relationship between input and outputs over a time period.

Table 4. T-test results

SiGsuit02 | LI | L2 | I3 | L& | L5 | L6 | L7 | L8
Ho (Sys) 1 1 0 1 1 i 1 ]
Ho (Dia) | ! i 1 i 1 1 1 1
Ho (Hb) ! 1 1 1 1 i 1 I
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Figure 12. Conditional means for experiment
S1Gsuit02 (Systolic blood pressure)
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Figure 13. Conditional means for experiment
S1Gsuit02 (Diastolic blood pressure)
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Figure 14. Conditional means for experiment
S1Gsuit02 (Heartbeat rate)

6.4 Joint distribution, trend analysis, and hysteresis plots

To study the dynamics of input/output signals, it is
necessary to investigate the qualitative behavior of the
signals. Scatter diagrams (joint distribution plots) of
input/output and output/output signals reveal qualitative



information about the structure of input/output dependency
(e.g., linearity or non-linearity). A plot of the input or
output signal versus an (input or output) signal delayed by
time 7 will show the degree of dependency of each present
value of the signal on: (i) the previous values of its own
states, such as the relationship of output to {output-
7 delays); and (ii) the other signals, such as the
relationship of output to (input-7 delays). The qualitative
information contained in these plots can be used in system
modeling. Also, the trend analysis can be used to define a
quantitative approach for analyzing the scatter plots.
Figures 15-17 show the joint distribution for the case of
input (delayed) versus output (delayed) and output
(delayed) versus output (current).

Two different types of trend anmalysis (fuzzy trend and
linear trend) have been considered in the investigation of
the nature of relationship between delayed input and
output. The trend analysis can be used to determine [9]:

= whether there exists a trend of increase in means as
the level of the independent variable increases. The
existence of this trend would correspond to the linear
input/output relationship; or

= whether the function which relates the means and the
level of the independent variable is significantly
curved. This would correspond to a non-linear
input/output relationship.

The F-test statistics is used to investigate this type of
dependency (e.g., linear or non-linear). It has been proved
in [9] that the ratio of fitting curve mean square to its
group mean square (F-ratio) has a so-called F-distribution.
This means that if the F-ratio is high, the corresponding
type of relationship exists between an input and output.
For example, Table 5 shows the F-ratio results for the
subject "S1" (the case of random G-suit profiles).

Table 5. F-ratios

Type of Linear Quadratic Cubic

relation

Systolic 72.10 0.13 1.20

Diastolic 83.50 4.70 0.62
Heart rate 50.10 7.70 2.50

It is clear from the F-ratio results (Table 5) that only the
linear component of systolic and diastolic blood pressures,
and linear and quadratic components of heartbeat rate are
significant. Using this unique feature of F-ratio, it is
possible to group the collected data into different groups.
Also, the idea behind the fuzzy trend analysis is to define a
number (fuzzy index) for comparing the qualitative results
of the trend and scatter plot analysis.

Finally, a hysteresis plot has been defined for qualitative
analysis of input/output data. Figures 18 and 19 show
examples of such plots. The X-axis of the plot is either G-
suit or PPB pressure. A physiological signal (e.g., systolic
blood pressure) normalized by the G-suit or PPB pressure
is plotted as the Y-axis. In general, the narrower the plot,
the more repeatable the physiological response.
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6.5 Auto-correlation and Cross-correlation

The primary purpose of linear correlation analysis is to
measure the strength of a linear relationship between two
variables. This tool can also be used in the design of an
experiment. In general, the trend analysis reveals the
existence of a linear or non-linear relationship between the
input/output signals. In the physiological systems, the
maximum value in correlation analysis indicates the
maximum dependency between input/output data in the
case of linear relationship. Also, the sign and position of
the maximum show the direction of relationship and lag or
lead of the system, respectively. Therefore, the correlation
analysis is a tool for obtaining more information about the
characteristics of the system. Finally, it should be
mentioned that the correlation analysis is very sensitive to
the interval (sampling rate) of the data set. To eliminate
this dependency, the bootstrap technique is typically used
[101. Figures 20-22 show the auto-correlation and cross-
correlation for the case of a BRAG valve (NGLQ9)
experiment. It has been mentioned earlier that the G-suit
and PPB pressures are linearly dependent for the BRAG
valve results.

6.6 Higher Order Spectral Analysis

Auto-correlation and power spectrum analysis cannot
reveal all the information contained in a stochastic or
deterministic signal. Higher-order spectral analysis looks
into the higher-order momenta or cumulants of a signal to
find out more information about the process. This feature
has not yet been fully implemented for the analysis of the
ground-test experimental data.
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7. CONCLUSIONS

A generic toolbox has been developed for analyzing the
results collected in physiological experiments aimed at the
development of  advanced  non-linear  Anti-G
countermeasures. The toolbox called Physiological Data
Analysis Toolbox (P-DAT) has been applied to the
analysis of physiological data collected in Gz experiments.
This tool can be also used at the experiment design stage.
If ©-DAT is used for the preliminary analysis of
physiological data, it yields important information that can
be further used at the modeling stage [5]. Finally, it should
be mentioned that O-DAT toolbox can be used to analysis
different types of physiological experimental data.
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